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Lecture 1: Microlensing History and Theory
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Outline of Lectures
Lecture 1: Microlensing History and Theory

• Background
• Motivation/Goals
• Early results
• Evolution of a field
• Basic microlensing theory
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Outline of Lectures
Lecture 1: Microlensing History and Theory

Lecture 2: Beyond the Single lens
• Finite source star
• Limb Darkening
• Blending
• Parallax
• Xallarap
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Outline of Lectures
Lecture 1: Microlensing History and Theory

Lecture 2: Beyond the Single lens

Lecture 3: Planetary Microlensing - I
• Binary lens microlensing
• Extreme mass ratio microlensing
• Theoretical tools of trade: caustics
• Planetary microlensing regiemes
• General rules
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Outline of Lectures
Lecture 1: Microlensing History and Theory

Lecture 2: Beyond the Single lens

Lecture 3: Planetary Microlensing - I

Lecture 4: Planetary Microlensing - II
• Capabilities, detection limits
• Detection
• Modelling
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Detection techniques

Image copyright M. Perryman

Microlensing: Theory, Practice, Results, Future – p.3/30



Detection techniques

Microlensing: Theory, Practice, Results, Future – p.3/30



Detection techniques

Microlensing: Theory, Practice, Results, Future – p.3/30



Detection techniques

Microlensing: Theory, Practice, Results, Future – p.3/30



Detection techniques

Microlensing: Theory, Practice, Results, Future – p.3/30



Detection techniques

Microlensing: Theory, Practice, Results, Future – p.3/30



Detection techniques

Microlensing: Theory, Practice, Results, Future – p.3/30



Detection techniques

Microlensing: Theory, Practice, Results, Future – p.3/30



Detection techniques

Microlensing: Theory, Practice, Results, Future – p.3/30



Detection techniques

Microlensing: Theory, Practice, Results, Future – p.3/30



Detection techniques

Microlensing: Theory, Practice, Results, Future – p.3/30



Detection techniques

Microlensing: Theory, Practice, Results, Future – p.3/30



Detection techniques

Microlensing: Theory, Practice, Results, Future – p.3/30



Detection techniques

Microlensing: Theory, Practice, Results, Future – p.3/30



Detection techniques

Microlensing: Theory, Practice, Results, Future – p.3/30



Detection techniques

Microlensing: Theory, Practice, Results, Future – p.3/30



Detection techniques

Microlensing: Theory, Practice, Results, Future – p.3/30



Detection techniques

Microlensing: Theory, Practice, Results, Future – p.3/30



Capability
Recall from the last lecture that microlensing is most
sensitive to planets with projected orbit radii around
∼ RE.
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Capability
Recall from the last lecture that microlensing is most
sensitive to planets with projected orbit radii around
∼ RE.
This is an interesting regieme to probe, as the radial
velocity and transit techniques are more effective at
detecting planets close to their host star. However,
they are extending their detection space as time
baselines increase.
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Capability
Recall from the last lecture that microlensing is most
sensitive to planets with projected orbit radii around
∼ RE.
This is an interesting regieme to probe, as the radial
velocity and transit techniques are more effective at
detecting planets close to their host star. However,
they are extending their detection space as time
baselines increase.

Microlensing is currently detecting planets in a previ-

ously unreachable region of the planetary mass-radius

space. Microlensing is returning detections of planets

with masses approaching that of Earth.
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Detection space

Figure courtesyK. Horne
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Capability
The lensing effect is a “snapshot” of the lens system:
all planets are detected at once.

Microlensing: Theory, Practice, Results, Future – p.6/30
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all planets are detected at once.
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Capability
Distant planetary systems are being discovered.
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Capability
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Capability
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Capability

Ground-based microlensing is relatively insensitive to
habitable planets, as the most-likely lens stars are cool
M-dwarfs.
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Capability

Ground-based microlensing is relatively insensitive to
habitable planets, as the most-likely lens stars are cool
M-dwarfs. However, a space telescope such as the
proposed Microlensing Planet Finder(Bennett, 2006)
will be much more likely to detect habitable planets
via microlensing, including moons, if present.
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Detection
Given a microlensing event, our default assumption is
that it is due to a single lens object.
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Detection
Given a microlensing event, our default assumption is
that it is due to a single lens object.

However:

In studies of nearby solar type stars,
Abt & Levy (1976)found58% of the G dwarf
primary stars had one or more stellar companions( see
alsoAbt, 1987). Duquennoy & Marcy (1991)find a
similar fraction of57%. The multiplicity amongst M
dwarfs is slightly less, at42%
(Fischer & Marcy, 1992).
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Detection
Given a microlensing event, our default assumption is
that it is due to a single lens object.

Any anomaly seen in a microlensing event attributable
to a non-singular lens mass is based on the
significance of the departure from a single lens fit to
the lightcurve.
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Detection
Given a microlensing event, our default assumption is
that it is due to a single lens object.

Any anomaly seen in a microlensing event attributable
to a non-singular lens mass is based on the
significance of the departure from a single lens fit to
the lightcurve.

The significance of any deviation is going to be
strongly dependent on the quality of the photometry
and the frequency and consistency of observations.
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Detection
Given a microlensing event, our default assumption is
that it is due to a single lens object.

Any anomaly seen in a microlensing event attributable
to a non-singular lens mass is based on the
significance of the departure from a single lens fit to
the lightcurve.

The significance of any deviation is going to be
strongly dependent on the quality of the photometry
and the frequency and consistency of observations.

Most common “goodness-of-fit” paramater is

χ2 =
N

∑

i=1

(yi(t) − ŷi(t))
2

σ2
i
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Detection
We can use the difference inχ2 between a single lens
fit and a binary lens fit as our detection criteria.
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Detection
We can use the difference inχ2 between a single lens
fit and a binary lens fit as our detection criteria.

∆χ2 = χ2
S − χ2

P

whereχ2
S andχ2

P are theχ2 values for a fit to a single
lens and binary(planetary) lens fit respectively.
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We can use the difference inχ2 between a single lens
fit and a binary lens fit as our detection criteria.

∆χ2 = χ2
S − χ2

P

whereχ2
S andχ2

P are theχ2 values for a fit to a single
lens and binary(planetary) lens fit respectively.
Typical detection threshold values are∆χ2 = 60 –
100, corresponding to significance levels of∼ 6.3σ –
10σ.
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Detection
We can use the difference inχ2 between a single lens
fit and a binary lens fit as our detection criteria.

∆χ2 = χ2
S − χ2

P

whereχ2
S andχ2

P are theχ2 values for a fit to a single
lens and binary(planetary) lens fit respectively.
Typical detection threshold values are∆χ2 = 60 –
100, corresponding to significance levels of∼ 6.3σ –
10σ. ∆χ2 as a detection criterion is sensitive to,
amongst other things, noisy data and photometric
errors.
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Detection
Can produce detection zone maps per observed event,
e.g.Snodgrass, Horne & Tsapras (2004):
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Detection
Or for given theoretical events, e.g.
(Rattenbury, 2002)
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Detection
Or for given theoretical events, e.g.
(Rattenbury, 2002)
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Detection
Snodgrass, Horne & Tsapras (2004)also computed
the detection zones for a range of planets and
predicted the number of planets detected assuming the
OGLE-III experiment characteristics.
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Detection
∆χ2 is fine for theoretical investigations, or formal
comparison between competing models.
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But as a first detection criterion, can be easily fooled
in practice with real observational data.

Microlensing: Theory, Practice, Results, Future – p.13/30



Detection
∆χ2 is fine for theoretical investigations, or formal
comparison between competing models.

But as a first detection criterion, can be easily fooled
in practice with real observational data.

Use is often made of some other detection criteria
such as:

Microlensing: Theory, Practice, Results, Future – p.13/30



Detection
∆χ2 is fine for theoretical investigations, or formal
comparison between competing models.

But as a first detection criterion, can be easily fooled
in practice with real observational data.

Use is often made of some other detection criteria
such as:

• Point-by-point significance - e.g 3 consecutive
points deviating by≥ 3σ
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Detection
∆χ2 is fine for theoretical investigations, or formal
comparison between competing models.

But as a first detection criterion, can be easily fooled
in practice with real observational data.

Use is often made of some other detection criteria
such as:

• Point-by-point significance - e.g 3 consecutive
points deviating by≥ 3σ

• Coherency - deviating points follow a clear trend
• Confirmable - are deviating points supported by

more observations
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Detection
Very difficult to encode the human observer’s intuition
when presented with a set of real observation data.
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Detection
Very difficult to encode the human observer’s intuition
when presented with a set of real observation data.

HoweverDominik & Rattenbury (2007).
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Detection
Very difficult to encode the human observer’s intuition
when presented with a set of real observation data.

HoweverDominik & Rattenbury (2007).

But before we can apply detection criteria, we need to
be able to fit microlensing lightcurve models!
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Modelling
Modelling planetary microlensing events requires
familiarity with the various lightcurve features due to
planetary lens systems.
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Modelling
Modelling planetary microlensing events requires
familiarity with the various lightcurve features due to
planetary lens systems.

Must also be aware that there is quite often more than
one family of models for any given event, with similar
goodness-of-fit values. May require physical
reasoning to prefer one class of models over another.
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Modelling
Modelling planetary microlensing events requires
familiarity with the various lightcurve features due to
planetary lens systems.

Must also be aware that there is quite often more than
one family of models for any given event, with similar
goodness-of-fit values. May require physical
reasoning to prefer one class of models over another.

The position of a planet is subject to a further
degeneracy: models with projected planet distanceap

are degenerate with those with distance1/ap.
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Modelling
Point source single lens events are relatively easy to
model. Standard non-linear fitting algorithms can be
used to findumin , tEandt0. The blend flux parameters
Fu, Fl can similarly be found, either as additional
parameters in the non-linear fitting routine, or through
linear least-squares.
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Modelling
Point source single lens events are relatively easy to
model. Standard non-linear fitting algorithms can be
used to findumin , tEandt0. The blend flux parameters
Fu, Fl can similarly be found, either as additional
parameters in the non-linear fitting routine, or through
linear least-squares.

u(t) =

[

umin
2 +

(

(t − t0)

tE

)2
]

1

2

µ =
u2 + 2

u
√

u2 + 4

F = Fl · A(u(t)) + FuMicrolensing: Theory, Practice, Results, Future – p.16/30



Modelling
Finite source single lens modelling can be done using
the analytic treatment of a finite source star.

• Witt & Mao, 1998
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• Witt & Mao, 1998

Binary lens modelling with a finite source star can
also be done analytically:

• Dominik, 2006
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Modelling
Finite source single lens modelling can be done using
the analytic treatment of a finite source star.

• Witt & Mao, 1998

Binary lens modelling with a finite source star can
also be done analytically:

• Dominik, 2006

Inverse ray shooting is a numerical technique which,
although slow, is robust:

• (Rattenbury, 2002)
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Modelling
The software tools for generating microlensing
lightcurves exist.
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Modelling
The software tools for generating microlensing
lightcurves exist.

There is currently no standard set of codes used by all
modellers.

The lightcurve generation code used depends on the
required accuracy, speed and application.

The fitting algorithm used also needs to be well
understood.
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Modelling
Apart from a general understanding of how
microlensing lightcurves alter with planetary mass
and position (intuition/experience), a broad coarse
search over the parameter space is a good way of
finding starting locations for more sophisticated fitting
algorithms.
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Modelling
Apart from a general understanding of how
microlensing lightcurves alter with planetary mass
and position (intuition/experience), a broad coarse
search over the parameter space is a good way of
finding starting locations for more sophisticated fitting
algorithms.

The first coarse search could be a grid-wise search for
example, or a random (uniform) sampling over the
parameter space.

May need several restarts, but should provide some
good starting locations.

Microlensing: Theory, Practice, Results, Future – p.19/30



Modelling
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Modelling
Having determined where possible optimal parameter
values might lie in the parameter space
Ω = Ω{umin , t0, tE, rs, xpi

, ypi
, qi}, the next step is to

apply more rigorousχ2 minimisation procedures.
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χ2 minima.
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Modelling
Having determined where possible optimal parameter
values might lie in the parameter space
Ω = Ω{umin , t0, tE, rs, xpi

, ypi
, qi}, the next step is to

apply more rigorousχ2 minimisation procedures.

Simple downhill simplex non-linear algorithms
(Neadler-Mead) are subject to getting trapped in local
χ2 minima.

The simplex method always moving toward a lower
χ2 value. If theχ2 manifold over the N-dimensional
parameter space is not smooth, methods such as the
downhill simplex can get trapped in non-optimal
parameter space states.
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Modelling
Having determined where possible optimal parameter
values might lie in the parameter space
Ω = Ω{umin , t0, tE, rs, xpi

, ypi
, qi}, the next step is to

apply more rigorousχ2 minimisation procedures.

Simple downhill simplex non-linear algorithms
(Neadler-Mead) are subject to getting trapped in local
χ2 minima.

It is for this reason that it is suggested that the simplex
method is restarted often, around the point inΩ

considered to be the set of parameter values that
minimisesχ2. If the procedure recovers the same
point after starting from a number of different points,
the set of optimal parameters is considered secure.
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Modelling
Having determined where possible optimal parameter
values might lie in the parameter space
Ω = Ω{umin , t0, tE, rs, xpi

, ypi
, qi}, the next step is to

apply more rigorousχ2 minimisation procedures.

Simple downhill simplex non-linear algorithms
(Neadler-Mead) are subject to getting trapped in local
χ2 minima.

If the χ2 manifold overΩ is sufficiently complicated,
there is a greater risk that the results returned from the
simplex methods are not global minima.
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Modelling
The Metropolis-Hastings Markov Chain Monte Carlo
(MHMCMC) algorithm (Grey 1992) can be used to
minimise a function over a parameter space in much
the same way as the simplex method described above.
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Modelling
The Metropolis-Hastings Markov Chain Monte Carlo
(MHMCMC) algorithm (Grey 1992) can be used to
minimise a function over a parameter space in much
the same way as the simplex method described above.

The main important difference is that each next point
in Ω is chosen with a certainprobability. This is in
contrast to the simplex method, which always accepts
a better candidate state compared to the current state.
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Modelling
The Metropolis-Hastings Markov Chain Monte Carlo
(MHMCMC) algorithm (Grey 1992) can be used to
minimise a function over a parameter space in much
the same way as the simplex method described above.

The main important difference is that each next point
in Ω is chosen with a certainprobability. This is in
contrast to the simplex method, which always accepts
a better candidate state compared to the current state.

This feature of the MHMCMC algorithm allows the
method to occasionally disregard a (possibly better)
candidate state. A chance therefore exists for the
algorithm to find a more favourable region on theχ2

manifold.
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Modelling

χ2

χ2
local

χ2
global

P1 P2
P

χ2
int

χ2
local

χ2
global

P1 Pint P2

P
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Modelling
Assume that the current set of parameters isΩ.
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Modelling
Assume that the current set of parameters isΩ.

Let {Zk}M
k=1 define a Markov chain, lengthM . Each

element ofZk is a set of parameters:Zk = Ωk.
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Modelling
The next element in the chain,Zk+1 is determined as
follows:
1. Choose a candidate set of parameters,Ω’, by
varying one or more of the parameters:

umin
′ = umin + Rumin

(0)

t′0 = t0 + Rt0

t′E = tE + RtE

... =
...

whereR is an appropriately scaled random number.
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Modelling
2. The candidate state,Ω’, is accepted with
probability:

α(Ω′|Ω) = min {1,F(f ′(t), f(t))}
wheref(t) is the model function calculated using the
current parameter set,Ω. f ′(t) is the model function,
calculated using the candidate parameter set,Ω’. F is
a function based on the difference between the current
and candidate models. If the candidate stateΩ’ is not
accepted, setZk+1 = Ωk.
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Modelling
α(Ω′|Ω) is the acceptance ratio. The functionF
essentially compares theχ2 values arising from fitting
the light curve generated using the candidate
parametersΩ’, to that of the current set.

F = exp

[

χ2 − χ′2
2

]
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Modelling
α(Ω′|Ω) is the acceptance ratio. The functionF
essentially compares theχ2 values arising from fitting
the light curve generated using the candidate
parametersΩ’, to that of the current set.

F = exp

[

χ2 − χ′2
2

]

The above two procedures are iteratedM times. Each
parameter is allowed to vary, and the algorithm settles
at a point in the parameter space which minimisesχ2.
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Modelling
We can also impose anannealing schedule,T (n):

F = exp

[

χ2 − χ′2
2T

]

If T → 0, the distribution will converge on the
optimal modal space in the state space. Given a
distribution in equilibrium, the “temperature”,T , can
slowly be lowered and allow the distribution to find its
new equilibrium. AsT → 0 the equilibrium will settle
on the mode state(s).
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Modelling

∆χ2 > 0 ∆χ2 < 0

T α(z′|z) Acceptz′ α(z′|z) Acceptz′

> 1 1 always ≤ 1 often

1.0 1 always 0 < α < 1 sometimes

0 < T < 1 1 always 0 < α ≪ 1 seldom

0.0 1 always 0 never

∆χ2 = χ2 − χ′2, whereχ′2 corresponds to the
candidate state, andχ2 to the current state.
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Modelling
• MHMCMC is excellent for fitting microlensing

lightcurves
• MHMCMC fitting can be optimised in many

ways.
• MHMCMC can be parallized easily.
• There is a lot of information in the equilibrium

state of each parameter.

Genetic algorithms such as Particle Swarm
Optimisation, Artificial Neural Networks and Self
Organising Maps are other possible categorization
methods.
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