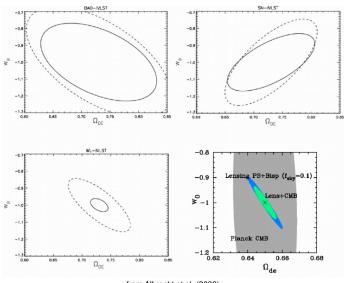
PHAT (PHoto-z Accuracy Testing)

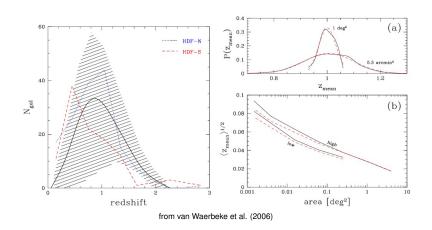

Hendrik Hildebrandt, Leiden Observatory

April 28, 2009

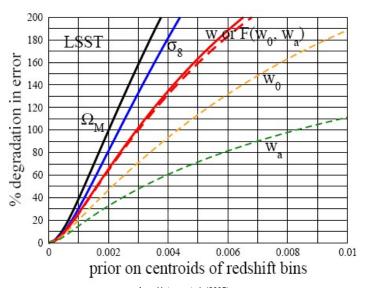
Outline

- Importance of photo-z's
- Introduction to PHAT
- First simulation
- GOODS-North catalogue
- Outlook

DETF report


from Albrecht et al. (2006)

What do we measure?


$$\left\langle \gamma^2 \right
angle \propto 0.01^2 \, \sigma_8^2 \, \Omega^{1.6} \, \emph{Z}_s^{1.4} \, \theta^{-(\emph{n}+2)/2}$$

- σ_8 : Mass power spectrum normalisation
- Ω: Mean density parameter
- n: Slope of the power spectrum
- z_s: Redshift of the sources

Uncertainty in the redshift distribution

Errors of cosmological parameters

from Huterer et al. (2005)

PHAT – PHoto-z Accuracy Testing

Goals

- Credibility
- Quantitative understanding
- Rank and profile methods

Tools

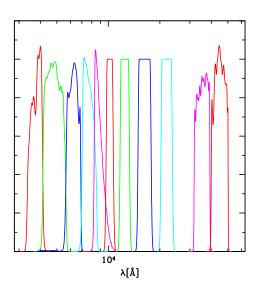
- Standardised test environments
- Study:
 - Codes
 - Templates
 - Filter sets
 - S/N
- Long term: study different approaches on galaxy photometry

PHAT – Photo-z Accuracy Testing

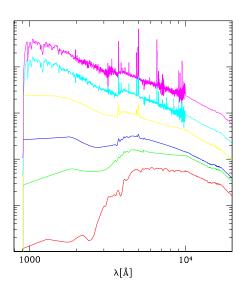
Timeline

- Sep 2007: Start of PHAT
- Mar 2008: 1st simulation released
- May 2008: Wiki page launched with results from 1st simulation
- Aug 2008: GOODS-North catalogue released
- Sep 2008: Photo-z workshop in London
- Dec 2008: PHAT workshop in Pasadena
- Mar 2009: GOODS results on Wiki

Websites

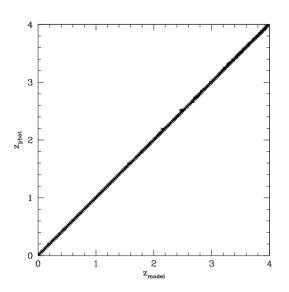

- PHAT Wiki page:
 - http://www.astro.caltech.edu/twiki_phat/bin/view/ Main/WebHome
- PHAT mailing list: http://astro.caltech.edu:88/mailman/listinfo/phat

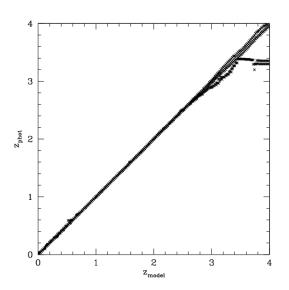
First simulation by S. Arnouts


Motivation

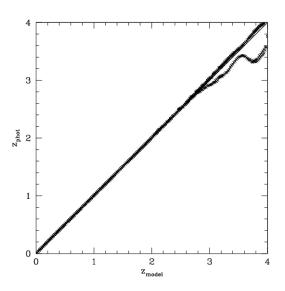
- Start as simple as possible.
- Test low-level agreement.
- Provide:
 - 2 catalogues
 - Template set
 - Filter curves
 - Optimal training set

Filter set

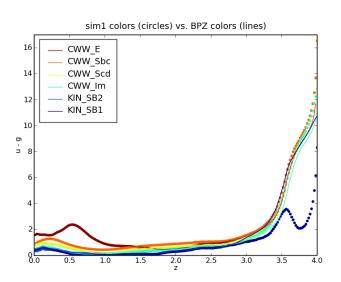

Template SEDs


Results from 15 people

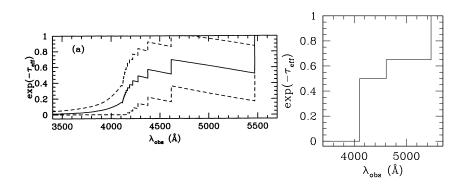
- Abdalla, Filipe
- Arnouts, Stephane
- Assef, Roberto
- Brammer, Gabriel
- Carliles, Sam
- Coe, Dan
- Dahlen, Tomas
- Feldmann, Robert
- Gerdes, David
- Gillis, Bryan
- Kotulla, Ralf
- Li, Tornado
- Miralles, Joan-Marc
- Purger, Norbert
- Singal, Jack


Noise-free catalogue - ZEBRA

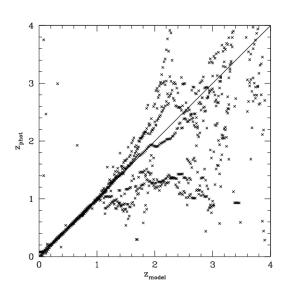
Noise-free catalogue - Hyperz

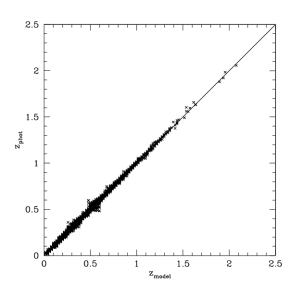


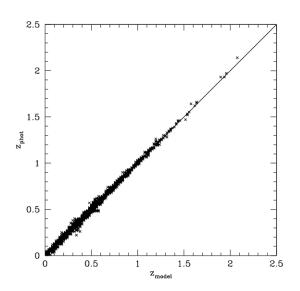
Noise-free catalogue - BPZ

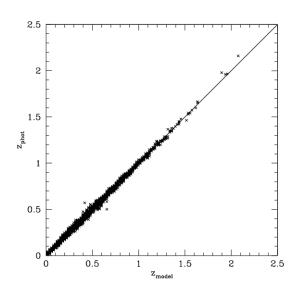


GOODS-North catal

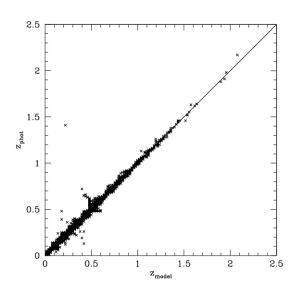

Noise-free catalogue - BPZ


Different IGM handlings

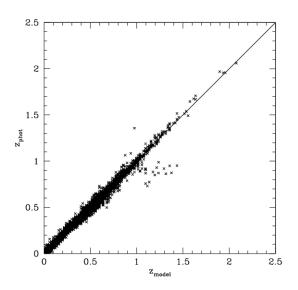

Noise-free catalogue - empirical code


Catalogue with noise - Le Phare

Catalogue with noise - Tomas Dahlen (template-based)



Catalogue with noise - Filipe Abdalla (empirical)



GOODS-North catal

Catalogue with noise - Roberto Assef (template-based)

Catalogue with noise - Tornado Li (empirical)

Tornado's photo-z code

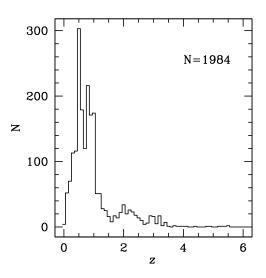
- Empirical fitting method
 - Assuming galaxy redshift is a function of galaxy magnitudes and colors

$$z = a_0 + \sum_{i}^{N} a_i m_i + \sum_{i}^{N} \sum_{j=i+1}^{N} a_{ij} (m_i - m_j)^2$$

- + For each input galaxy, the fitting solutions (a0, ai, aij) are derived using 300 training-set galaxies which have the best mag. and colors to the input galay in the training set
- + If some columns give crappy fitting results, i.e., the fitting is not good, reject the columns and re-do the fitting
- + If a galaxy only has photometry in some filters but not all UBVRIJHK, then the fitting is derived using training-set galaxies which have the photometry in the same passbands. Minimum three passband photometry is required.
- + Somehow my photo-z code is very slow. Suspect because of mpfitfun.pro. Any suggestion to make the code faster are welcome!

Conclusions from first simulation

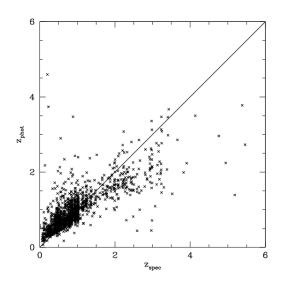
Conclusions


- Generally good agreement
- Empirical and template-based codes work
- However, more than a factor of 2 accuracy differences
- IGM handling very different in the different template-based codes
- Importance of user-handling

GOODS-North catalogue by P. Capak

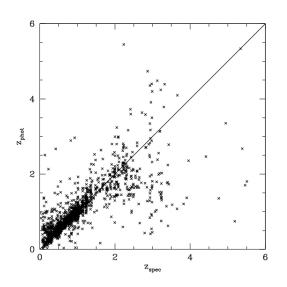
Motivation

- Several people: "We want real data."
- Highly motivating
- Going back later
- Provide:
 - Filter curves (*UBVRI*, 4× ACS, *JHK*, 4× IRAC)
 - Small training set


GOODS-North catalogue *z*-distribution

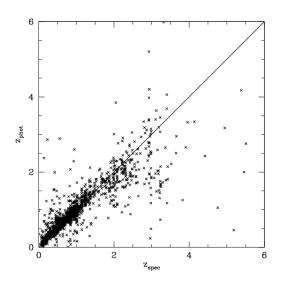
Results from 9 people

- Assef. Roberto
- Banerji, Manda
- Brammer, Gabriel
- Coe, Dan
- Kotulla, Ralf
- Li, Tornado
- Miralles, Joan-Marc
- Schmidt, Sam
- Wolf, Chris


Manda Banerji (ANNz)

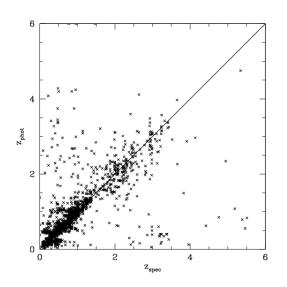
Statistics

bias = -0.01 $\sigma = 0.07$ outliers = 31.0%


Tornado Li (empirical)

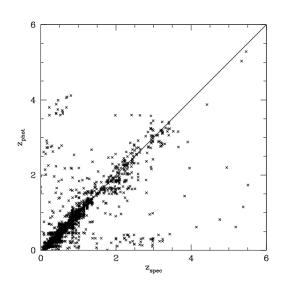
Statistics

bias = -0.01 $\sigma = 0.052$ outliers = 18.0%


Tornado Li (empirical) without IRAC

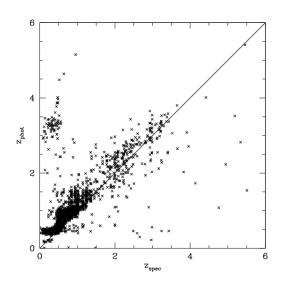
Statistics

bias = -0.01 $\sigma = 0.051$ outliers = 13.7%


Joan-Marc Miralles (Hyperz)

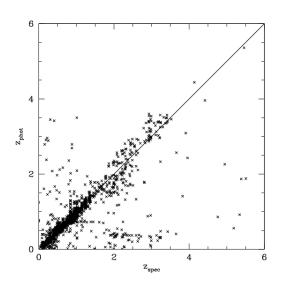
Statistics

bias = 0.00 $\sigma = 0.058$ outliers = 18.5%


Joan-Marc Miralles (Hyperz) without IRAC

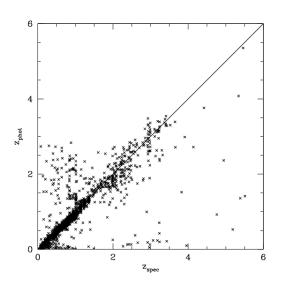
Statistics

bias = 0.02 $\sigma = 0.055$ outliers = 14.7%


Dan Coe (BPZ)

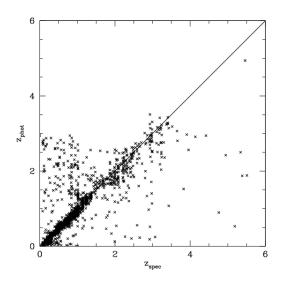
Statistics

bias = -0.05 $\sigma = 0.06$ outliers = 30.9%


Dan Coe (BPZ) without IRAC

Statistics

bias = 0.01 σ = 0.048 outliers = 11.4%


Gabriel Brammer (EAZY)

Statistics

bias = 0.02 $\sigma = 0.042$ outliers = 11.6%

Gabriel Brammer (EAZY) without IRAC

Statistics

bias = 0.02 $\sigma = 0.042$ outliers = 13.5%

Outlook

What's next?

- More advanced analysis
- PHAT0b
- GOODS-North b
- Open to ideas from the community

Websites

- PHAT Wiki page:
 - http://www.astro.caltech.edu/twiki_phat/bin/view/Main/WebHome
- PHAT mailing list:
 - http://astro.caltech.edu:88/mailman/listinfo/phat