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Abstract

We study a scalar-tensor cosmological model where the Einstein tensor is non-minimally coupled
to the free scalar field dynamics. Using FRW metric, we investigate the behavior of scale factor for
vacuum, matter and dark energy dominated eras. Especially, we focus on the inflationary behavior at
early universe. Moreover, we study the perturbation analysis of this model in order to confront the
inflation under consideration with the observational results.

1 Cosmology with non-minimal kinetic coupled gravity

Let us consider a free (without potential term) scalar field whose kinetic term is coupled both with the metric
tensor gμν and Einstein tensor Gμν . We write the action as

S =

∫
d4x
√
−g

[
R

8π
− (gμν + αGμν)∇μφ∇νφ− 2Λ

]

+ Sm, (1.1)

where R is the Ricci scalar, α is a coupling parameter with dimension of (length)2, Λ is a positive cosmo-
logical constant, and Sm is the matter action. Using the Friedmann-Robertson-Walker (FRW) flat (k = 0)
background metric the field equations are obtained

3H2 = 4πφ̇2
(
1− 9αH2

)
+ Λ+ 8πρm,

2Ḣ + 3H2 = −4πφ̇2
[
1 + α

(
2Ḣ + 3H2 + 4Hφ̈φ̇−1

)]
+ Λ− 8πpm,

(φ̈+ 3Hφ̇) − 3α(H2φ̈+ 2HḢφ̇+ 3H3φ̇) = 0. (1.2)

Therefore, one obtains the total density and pressure respectively as ρ
T
= ρm +

Λ
8π +

1
2 φ̇
2(1− 9αH2) and

p
T
= pm − Λ

8π +
1
2 φ̇
2
[
1 + α

(
2Ḣ + 3H2 + 4Hφ̈φ̇−1

)]
, where a dot denotes derivative with respect to t.

Equation (1.2) can be easily integrated to φ̇ =
√
2λ

a3(1−3αH2) , where λ is a positive constant of integration.

In the following, we will set up a cosmological model in a systematic way which includes an inflation era
with suitable slow-roll conditions, an exit mechanism from inflation, a deceleration era, and an acceleration
era of the universe.
I) Inflationary universe: At very early universe we obtain {(1−9αH2)+αḢ(1+ 12αH2

1−3αH2 )} = 0. One may
solve this differential equation to obtain the plot H(t) as depicted in Fig.1. As is seen in Fig.1, considering
a typical small value of α, the behaviour for H(t) is so favored to model an inflationary cosmology with an
almost constant Ḣ ' 0 and large H for t > 10−35 sec. Actually, the Hubble parameter H may suddenly
(typically within 10−35 seconds) approach to the large and almost constant asymptotic value H ≡ Hα '√
1
9α ' 1.2× 10

35sec−2, provided that α is assumed to be a typically small parameter, α ∼ 10−71sec2. One

may obtain the number of e-folding during the inflation as N =
∫ tf
ti
Hdt =

∫ tf
ti

√
1
9αdt =

√
1
9α (tf − ti).

Within the typical short period of time (ti = 10
−35) < t < (tf = 10

−33), required by particle physics, and
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(a) The plot of H(t) for a typical value
of α = 10−71sec2 showing the be-
haviourH ' 1.2×1035sec−2 and Ḣ ' 0
for t > 10−35 sec.

(b) the behavior of short-wavelength
perturbations with using the slow-roll
approximation for H = constant., k �
Ha, a0 = 1 and T = Ht ' 4 .

(c) the behavior of long-wavelength
perturbations with using the slow-roll
approximation for H = constant, k �
Ha, a0 = 1 and 2 < T = Ht < 4 .

using
√
1
9α ' 1.2 × 10

35, we obtain N ∼ 120 well above N ∼ 60 which is at least needed to overcome the
problems of standard cosmology. If we assume that the initial size of the universe before inflation was about
the Planck length 10−34m, then the 120 number of e-folding results in the final size of the universe at the end
of inflation as large as a(tf ) ∼ 1022m. This large size will remove all the problems of standard cosmology.
II) Radiation and Matter dominated universe: After the inflationary era the scale factor a becomes ex-
ponentially large. At this time, namely tf , the very fast decrease in the kinetic energy of the scalar field starts
and can be balanced by the creation of baryoinc matter with the density and pressure related by the equation
of state pm = ωmρm. At this stage, we have just two components left as follows ρT = ρm+

Λ
8π , pT = pm−

Λ
8π .

Assuming an small cosmological constant in comparison with the sufficiently large values of matter density
and pressure, the cosmological evolution of universe at this stage with ignorable cosmological constant is
well known as follows [11, 8] I) for ωm =

1
3 we have the radiation dominant era with the scaling behaviour

ρm ∝ a−4 and time evolution a(t) ∝ t1/2, II) for ωm = 0 we have the matter dominant era with the scaling
behaviour ρm ∝ a−3 and time evolution a(t) ∝ t2/3.
III) Dark energy dominated universe: At the late time and old universe, the scale factor becomes
so large that ρm ∝ a−3 � Λ/8π. This stage of evolution is governed by the cosmological constant
ρ
T
= Λ
8π , pT = −

Λ
8π , which represents the new phase of vacuum state as pT = −ρT = −

Λ
8π , where the

cosmological constant plays the role of Dark energy. The cosmological evolution of this dark energy domi-

nated universe is well known as de Sitter expansion [11, 8] a(t) ∝ exp(HΛt), where HΛ =
√
Λ
3 .

2 Cosmic perturbation

we consider the field perturbation equation in the Newtonian Gauge as follows

I) Inside the Hubble scale: After a tedious but straightforward calculation we find the scalar field

perturbation equation in terms of physical time in this form ¨(δφ)+3H ˙(δφ)+ k
2

a2
(δφ) ≈ 0, where use has been

made of the slow-roll approximation.(Figure 2)
II) Evolution through Horizon Exit: We obtain the equations for the perturbations in slow-roll regime

result ¨(δφ) + 3H ˙(δφ) ≈ 0. This equation is also easily solved with H being constant.(Figure 3)

3 Vacuum fluctuation of the inflaton field

We can obtain the primordial power spectrum [10] PR(k) =
[
( H2π )(

H

φ̇
)
]2

k=aH
after a tedious but straightfor-

ward calculations, and the primordial tensor perturbations PT (k) =
1
π

[
H
2π

]2
k=aH

. The tensor-to-scalar ratio
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is then obtained as r = PT
PR
=
[
φ̇2

πH2

]

k=aH
=
[
9φ2

π

]

k=aH
, Comparing with the upper bounds obtained by the

recent Planck and BICEP2 measurements [13, 14, 15], we find ε ' 2× 10−2 and

[φ]k=aH '

{
0.19 MP Planck
0.26 MP BICEP2,

(3.1)

which predicts the vacuum expectation value of the scalar field, at the time of leaving the horizon, in terms
of the Planck mass.

4 Conclusion and discussion

Motivated by the fact that the common inflationary scenarios usually need a scalar field potential to trigger
the inflation, and that taking the proper inflaton potential without fine tuning and cosmological constant
problems is still an unsolved issue, we have studied the cosmological implications of a kinetic coupled scalar-
tensor gravity to establish a systematic inflation model which is capable of transition to the matter dominant
and dark energy dominant eras. Moreover, we have studied the perturbation analysis of this inflation model
in order to confront the inflation under discussion with the recent observational results.
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