## Coevolution of galaxies and z=1.630black holes in massive set of the set

z=1,.622

z = 1.622

z=1.544?

z = 1.623

z=1.649 z=1.322?

z=1.705 z=1.627

> Alexis Finoguenov Helsingin Yliopisto

z=0.643

### Chandra COSMOS

### Bias and halo mass of AGN



Allevato, AF, et al. 2014

#### X-ray AGN at high-z: post-QSO or growing black holes



Alexis Finoguenov





### COSMOS

Photoz z=0.8 z=0.6 z=0.4 z=0.2

IAB<25

1.4Mio galaxies

X-ray contours

Finoguenov et al. 2007 George, AF et al. 2011 George, AF et al. 2012



#### Galaxy groups and LSS



LSS at 0.12, 0.22, 0.34, 0.37, 0.51, 0.73, 0.89

#### **Direct AGN HOD**

K.Kovac

#### Weak lensing calibration of Lx-M relation





### HOD of radio galaxies Smolcic, AF et al. 2011



#### Alexis Finoguenov

### Radio distribution of Radio AGNs



Alexis Finoguenov

#### Silverman,...AF et al. 2014





Alexis Finoguenov

### Oh, Mulchaey, AF, et al. 2014



### X-ray AGNs inside CDFS galaxy groups (Oh..AF..2014)



Alex

### Comparison to galaxy clusters (LoCuSS survey)







Alexis Finoguenov

Cosmology of deep surveys

#### AGN within galaxy groups

#### XMM-Chandra AGN

- ▶ 390 AGN with z<sub>spec</sub> < 1;</p>
- ▶ 144 AGN with z<sub>phot</sub> < 1;



#### Galaxy groups

Finoguenov et al. (2007), Leauthaud et al. (2010), George et al. (2011)

- ▶ 189 objects at z<1
- ▶log M<sub>200</sub> [M<sub>sun</sub>] = 13-14.5

#### XMM-Chandra AGN in groups:

- ▶ 58 AGN within  $< R_{200}$  and  $< 3\sigma$ ;
- ► Galaxy membership catalog (George et al. 2011,2012)
  - 22/58 AGN are in BCGs;
  - 36/58 AGN are in satellites;

Allevato, AF, et al. 2012

#### Mean Halo Occupation



#### Satellite AGN HOD:

$$\langle N_{sat} \rangle (M_h) = f'_a \left(\frac{M_h}{M_1}\right)^{\alpha_s} exp(-M_{cut}/M_h)$$

- Increasing AGN fraction with M<sub>h</sub>;

- AGN do not avoid satellite galaxies;
- Central AGN HOD:
- log  $M_{min}$  [M<sub>sun</sub>] = 12.7(12.1-12.9)

$$\langle N_{cen} \rangle (M_h) = f'_a \ erf\left(\frac{log M_h - log M_{min}}{\sigma_{log M}}\right)$$

#### Allevato, AF, et al. 2012

### **HOD** model parameters

Allevato et al. 2012 (COSMOS); Mountrichas, Georgakakis, AF+ 2013 (AEGIS, COSMOS, ECDFS)





Residual r\_o=4.5+/-0.4 (Mountrichas) CDFN: 4.2+/-0.4 (Gilli'05) Alexis Finoguenov

# Increased red [OII] emitters in groups at high redshifts



Not only the fraction, but the strengths of [OII] increases as well.

Based on the 30-band photometry (*NUV-r* from Ilbert et al. 2010), we find these red [OII] emitters are not undergoing active star formation. The [OII] emission is likely due to AGNs. Alexis Finoguenov Direct AGN HOD Tanaka et al. to be submitted \$3007



The red fraction clearly depends on environment. The red fraction does not strongly change with redshift (note that we are looking at very massive galaxies only).

But, the [OII] emitters on the red sequence strongly increases in groups at high redshifts.

Alexis Finoguenov

Direct AGN HOD Tanaka et al. to be submitted 300r

### Summary on AGN

- z>3 fast growth of BH leads to a large population exceeding  $10^8~M_{\odot}$
- z<3 secular evolution</li>
- z>1 groups contain typical AGN
- z<1 groups contain optically dull AGN</li>
- $M \sim 10^{13} M_{\odot}$  groups: extra triggering is seen in the center
- $M \sim 10^{15} M_{\odot}$  survival AGN only through the first infall
- z<3 X-ray AGN trace galaxy transformation in massive environment

(clustering argument, as in a post-phase bias would be lower)

### Galaxy transformation



#### Alexis Finoguenov

Strong radial trends get established at low-z





# evolution disks and Alexis Finoguenov



### z~0: ZENS. Carollo+2014



Alexis Finoguenov

### Size evolution of Es



Huerto-Company, Mei, AF

#### Group mass vs galaxy size



Huerto-Company, Mei, AF



#### Giodini, AF, Peng, Lilly, et al. 2011

#### Mass=>feedback (AGN) quenching

Field: mainly dwarf galaxies are quenched by environment
Both components are seen in 3.e13 groups
Clusters are dominated by environmental quenching

Alexis Finoguenov



Alexis Finoguenov

#### **SFR** evolution



Highest rate correspond to 6% of baryons per Gyr

#### Popesso, Biviano, AF et al. 2014

Alexis Finoguenov

CDFS: extended sources

### IR-LF evolution in different environment



#### Popesso, Biviano, AF, et al. 2014

Alexis Finoguenov

CDFS: extended sources

#### Mass trends in SFR



Popesso, Biviano, AF et al. 2014

### Groups and global SFR



Popesso, Biviano ,AF+14

#### Halo mass dependence on SF quenching



#### See a talk by Erfanianfar

- Quenching in groups more efficient than in filaments (same density)
- Different galaxy type mix in groups
- Quenching is more DM than density dependent

# Role of halo formation (relevant for the conformity) Tinker,... AF et al. 2012



#### Cosmology of deep surveys

### Conclusions

- The shape of the AGN XLF is similar between the filed and galaxy groups, but not in clusters. Similarity to GSMF.
- AGNs are quenched during the first passage through the cluster. Similar to galaxies
- AGN activity in galaxy groups seems to proceed in parallel with formation of the bulge component of spirals and quenching of their star-formation activity. As such AGN in groups confuse the general trends of BH growth that proceed in parallel with SFR and due to direct matter infall.
- Groups contribute substantially to the star-formation budget at high redshifts
- Morphology studies indicate an importance of dynamical interaction in explaining the galaxy transformation

### Size evolution of BCGs



Alexis Fi